Sagittal-plane trunk position, landing forces, and quadriceps electromyographic activity.
نویسندگان
چکیده
CONTEXT Researchers have suggested that large landing forces, excessive quadriceps activity, and an erect posture during landing are risk factors for anterior cruciate ligament (ACL) injury. The influence of knee kinematics on these risk factors has been investigated extensively, but trunk positioning has received little attention. OBJECTIVE To determine the effect of trunk flexion on landing forces and quadriceps activation during landing. DESIGN Two (sex) x 2 (task) repeated-measures design. SETTING Research laboratory. PATIENTS OR OTHER PARTICIPANTS Forty healthy, physically active volunteers (20 men, 20 women). INTERVENTION(S) Participants performed 2 drop-landing tasks. The first task represented the natural, or preferred, landing strategy. The second task was identical to the first except that participants flexed the trunk during landing. MAIN OUTCOME MEASURE(S) We measured peak vertical and posterior ground reaction forces and mean quadriceps electromyographic amplitude during the loading phase of landing (ie, the interval from initial ground contact to peak knee flexion). RESULTS Trunk flexion decreased the vertical ground reaction force (P < .001) and quadriceps electromyographic amplitude (P < .001). The effect of trunk flexion did not differ across sex for landing forces or quadriceps electromyographic activity. CONCLUSIONS We found that trunk flexion during landing reduced landing forces and quadriceps activity, thus potentially reducing the force imparted to the ACL. Research has indicated that trunk flexion during landing also increases knee and hip flexion, resulting in a less erect landing posture. In combination, these findings support emphasis on trunk flexion during landing as part of ACL injury-prevention programs.
منابع مشابه
Pelvic function in anuran jumping: Interspecific differences in the kinematics and motor control of the iliosacral articulation during take-off and landing.
Although the anuran pelvis is thought to be adapted for jumping, the function of the iliosacral joint has seen little direct study. Previous work has contrasted the basal "lateral-bender" pelvis from the "rod-like" pelvis of crown taxa hypothesized to function as a sagittal hinge to align the trunk with take-off forces. We compared iliosacral movements and pelvic motor patterns during jumping i...
متن کاملThe interaction of trunk-load and trunk-position adaptations on knee anterior shear and hamstrings muscle forces during landing.
CONTEXT Because anterior cruciate ligament (ACL) injuries can occur during deceleration maneuvers, biomechanics research has been focused on the lower extremity kinetic chain. Trunk mass and changes in trunk position affect lower extremity joint torques and work during gait and landing, but how the trunk affects knee joint and muscle forces is not well understood. OBJECTIVE To evaluate the ef...
متن کاملEffect of verbal instructions on muscle activity and risk of injury to the anterior cruciate ligament during landing.
BACKGROUND Minimising the likelihood of injury to the anterior cruciate ligament (ACL) during abrupt deceleration requires proper synchrony of the quadriceps and hamstring muscles. However, it is not known whether simple verbal instructions can alter landing muscle activity to protect the knee. OBJECTIVE To assess the efficacy of verbal instructions to alter landing muscle activity. METHODS...
متن کاملKinematic, kinetic and EMG patterns during downward squatting.
The aim of this study was to investigate the kinematic, kinetic, and electromyographic pattern before, during and after downward squatting when the trunk movement is restricted in the sagittal plane. Eight healthy subjects performed downward squatting at two different positions, semisquatting (40 degrees knee flexion) and half squatting (70 degrees knee flexion). Electromyographic responses of ...
متن کاملThe influence of gender on knee kinematics, kinetics and muscle activation patterns during side-step cutting.
BACKGROUND It has been suggested that gender differences in the performance of athletic maneuvers is a contributory factor with respect to the disproportionate incidence of non-contact anterior cruciate ligament injury in female athletes. The purpose of this study was to evaluate gender differences in knee joint kinematics, kinetics and muscle activation during a side-step cutting. METHODS Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of athletic training
دوره 44 2 شماره
صفحات -
تاریخ انتشار 2009